Et konfidensinterval er en indikator for nøjagtigheden af din måling. Det er også en indikator for, hvor stabilt dit estimat er, hvilket er målet for, hvor tæt din måling vil være på det oprindelige estimat, hvis du gentager eksperimentet. Følg trinene herunder for at beregne konfidensintervallet for dine studiedata.
Skriv ned fænomenet, du gerne vil teste. Lad os sige, at du arbejder med følgende situation: Den gennemsnitlige vægt af en mandlig studerende ved ABC Universitet er 180 pund (ca. 80 kg). Du vil teste den nøjagtighed, hvormed du vil kunne forudsige vægten af mandlige elever på ABC University inden for et bestemt konfidensinterval.
2
Vælg en prøve fra den valgte befolkning. Dette er hvad du vil bruge til at indsamle dataene for at teste din hypotese. Lad os sige, at du tilfældigt valgte 1000 mandlige studerende.
3
Beregn gennemsnits- og standardafvigelsen af prøven. Vælg en stikprøvestatistik (f.eks. Gennemsnits- eller standardafvigelsen for prøven), som du vil bruge til at estimere din valgte befolkningsparameter. En befolkningsparameter er en værdi, som repræsenterer en bestemt karakteristik af befolkningen. Du kan finde gennemsnittet og standardafvigelsen for din prøve som følger:
For at beregne stikprøven gennemsnit af dataene, skal du blot tilføje alle vægten af de 1000 mænd, du har valgt, og opdele resultatet med samme værdi, hvilket er antallet af mænd. Dette skal give dig en gennemsnitsvægt på 186 lbs (ca. 84 kg).
For at beregne standardafvigelsen for prøven skal du finde middelværdien af dataene. Dernæst skal man finde variansen af dataene, det vil sige middelværdien af de firkantede forskelle i middelværdien. Når du finder dette nummer, skal du blot tage ud kvadratroden. Lad os sige, at standardafvigelsen her er 30 lbs. (Bemærk at disse oplysninger undertiden kan leveres under et statistikproblem).
Video: Spredning - Variationsbredte og standard afvigelse
4
Vælg dit ønskede niveau af tillid. De mest anvendte konfidensniveauer er 90%, 95% og 99%. Denne værdi kan også leveres i løbet af et problem. Lad os sige, at du har valgt 95% sortimentet.
5
Beregn din fejlmargin. Du kan finde fejlmarginen ved hjælp af følgende formel: Za / 2 * σ / √ (n). Za / 2 = tillidskoefficienten, hvor a = konfidensniveau, σ = standardafvigelse og n = prøvestørrelse. Dette er en anden måde at sige, at du skal multiplicere den kritiske værdi ved standardfejlen. Sådan kan denne formel løses, når du deler dele:
For at finde den kritiske værdi, eller Za / 2: Her er konfidensniveauet 95%. Konverter procentdelen til en decimal (0.95) og divider med 2 for at få 0,475. Derefter henvises til z værdi tabel at finde værdien svarende til 0,475. Du vil se, at den nærmeste værdi er 1,96, ved krydset af række 1.9, og søjlen er 0,06.
Tag standard fejlværdien, standardafvigelsen, 30 og divider den med kvadratroten af stikstørrelsen, 1.000. Du får 30 / 31,6 eller 0,95 lbs.
Multiplicer 1,96 med 0,95 (kritisk værdi ved standardfejl) for at få 1,86, din fejlmargin.
6
Indtast dit tillidsinterval. For at gøre dette skal du kun tage gennemsnittet (180) og skrive det ud for ± og fejlmarginen. Svaret er: 180 ± 1,86. Du kan finde de øvre og nedre grænser for konfidensintervallet ved at tilføje og subtrahere fejlmarginen fra middelværdien. Således er dens nedre grænse 180-186 eller 178,14, og dens øvre grænse er 180 + 1,86 eller 181,86.
Du kan også bruge denne formel til at finde konfidensintervallet: x ± ± Za / 2 * σ / √ (n). Her repræsenterer x the middelværdien.
tips
T- og z-værdierne kan beregnes manuelt ved hjælp af en grafregner eller statistiske tabeller, som let kan findes i statistiske bøger. Z-værdierne kan også findes ved hjælp af normalfordelingstabellen, mens t-værdier kan findes ved hjælp af distributionstabellen t. Talrige online-værktøjer er også tilgængelige, som kan være nyttige.
Den kritiske værdi, der bruges til at beregne fejlmargenen, er en konstant, der udtrykkes som værdien t eller z. Generelt foretrækkes t-værdier, når populationsstandardafvigelsen er ukendt, eller når en lille prøve anvendes.
Fordelingen af prøven skal være normal, for at dens konfidensinterval er gyldig.
Et konfidensinterval angiver ikke sandsynligheden for et bestemt resultat. For eksempel, hvis du er 95% sikker på, at dit gennemsnit er mellem 75 og 100, betyder 95% konfidensintervallet ikke, at der er en 95% chance for, at gennemsnittet falder inden for dit beregnede interval.
Der er flere metoder, såsom simpel tilfældig prøveudtagning, systematisk prøveudtagning og stratificeret prøveudtagning, hvorved du kan vælge en repræsentativ prøve for at teste din hypotese.
Nødvendige materialer
Video: Konfidensinterval for middelværdi med Nspire