Den gennemsnitlige forandringshastighed er en funktion, der repræsenterer den gennemsnitlige hastighed, hvormed en ting ændrer sig i forhold til noget andet, der ændrer sig. Dette betegnes som A (x). Behov for at beregne den gennemsnitlige forandringshastighed?
Metode 1 Forstå den gennemsnitlige forandringshastighed
1
Bemærk, at den gennemsnitlige forandringshastighed er en funktion. En funktion er et sæt matematiske operationer udført på en eller flere indgange (også kaldet variabler) for at producere et eller flere resultater. Med andre ord repræsenterer en funktion et forhold mellem et sæt inputfaktorer og et sæt produkter. Hver post er relateret til nøjagtigt et produkt.
2
Forstå variablerne. I matematik er en variabel et symbol for et uspecificeret eller kendt nummer. Det er normalt repræsenteret af et bogstav som x eller y.
3
Forstå hældningen. Hældningen af en linje er et tal, der angiver hældningen og retningen af den lige linje. Du kan måske allerede være bekendt med at beregne hældningen på en linje - dog kan du ikke være opmærksom på, at linjens hældning faktisk er en gennemsnitlig ændring - den gennemsnitlige ændring af en linje.
4
Genkend tørre linjer. Tørringslinjer er vigtige for at bestemme en gennemsnitlig forandringshastighed. En secant er en linje der skærer to eller flere punkter på en kurve. Når du finder den gennemsnitlige variation af en funktion, er det, du rent faktisk laver, at beregne hældningen af en sekant mellem disse to skæringspunkter.
De secant linjer henvises undertiden blot som "secants".
Video: Gennemsnitlig procentvis ændring
5
Kend din grundlæggende ligning. Når du først har fundet værdien af h, som forklaret nedenfor, kan du bruge denne grundlæggende ligning til at beregne den gennemsnitlige forandringshastighed.
Metode 2 Beregning af den gennemsnitlige forandringshastighed
1
Find f (x + h). For at begynde at beregne den gennemsnitlige forandringshastighed starter du ved at finde f (x + h) i din grundlæggende ligning. Udskift x i funktionen med (x + h) og beregne f (x + h). Resultatet vil være et matematisk udtryk, som kan bruges i senere trin til at beregne den samlede ændringshastighed. For at illustrere, lad os f.eks. Bruge funktionen f (x) = x 2. Lad os sige, at du skal beregne gennemsnitshastigheden mellem 2 og 5.
I eksemplet ovenfor kan du beregne f (x + h) ved hjælp af ligningen f (x + h) = (x + h) 2 = X2 + 2xh + h2.
2
Beregn den generelle ændringshastighed. Brug den grundlæggende ligning for den gennemsnitlige forandringshastighed og dens opløsning for f (x + h), og find den generelle forandringshastighed.
I eksemplet ovenfor ser dine beregninger ud som dette:
Video: Procentregning i Excel
3
Find h. Beregn h ved at trække værdierne fra slutningen og begyndelsen af det interval, hvorfra du beregner den gennemsnitlige forandringshastighed. Med andre ord, hvis intervallet er givet i form af (x1, x2), kan du beregne h med ligningen h = X2-X1.
I eksemplet ovenfor skal du huske på, at du forsøger at beregne gennemsnitshastigheden mellem 2 og 5. Derfor ser dine beregninger ud som dette: h
= x2-x1 = 5-2 = 3
4
Løs for at finde den gennemsnitlige forandringshastighed. Brug løsningerne fra de foregående trin til at beregne den gennemsnitlige forandringshastighed. I stedet for at bruge x i basisligningen skal du bruge værdien af X1.
I eksemplet ovenfor ser dine beregninger ud som dette:
A (x) = 2 x + h = 2 × 2 + 3 = 7
Video: Procentvis stigning i Excel
Video: Optimistic Nihilism
5
Skriv ned dit svar. Løsningen på din nye ligning er din gennemsnitlige forandringshastighed. I dette eksempel er svaret 7.
tips
Den gennemsnitlige forandringsligninger kan virke underlig og kompliceret, men de er nyttige til beregning af mange kendte ting, herunder omkostninger pr. Kilowatt og miles per time.